[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$6000\\
r=rate\to 8.25\%\to \frac{8.25}{100}\to &0.0825\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{quarterly, thus four}
\end{array}\to &4\\
t=years\to &4
\end{cases}
\\\\\\
A=6000\left(1+\frac{0.0825}{4}\right)^{4\cdot 4}\implies A=6000(1.020625)^{16}\\\\
-------------------------------\\\\[/tex]
[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$6000\\
r=rate\to 8.3\%\to \frac{8.3}{100}\to &0.083\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{semiannually, thus two}
\end{array}\to &2\\
t=years\to &4
\end{cases}
\\\\\\
A=6000\left(1+\frac{0.083}{2}\right)^{2\cdot 4}\implies A=6000(1.0415)^8[/tex]
compare them away.