Respuesta :

Answer :

  • d. Pi

Explanation :

The period since function is given by,

  • y = 2π/b

wherein,

  • b = coefficient of x inside the sine function

plugging in b as 2 ,we get

  • y = 2π/2
  • y = π

thus, option d. pi is the correct answer .

msm555

Answer:

π

Step-by-step explanation:

The period of a sine function is the horizontal length it takes for the function to complete one full cycle. For the function [tex] y = 3 \sin(2x) [/tex], the period is determined by the coefficient in front of [tex] x [/tex] inside the sine function.

The general form of a sine function is [tex] y = \sin(bx) [/tex], where [tex] b [/tex] affects the period.

The period [tex] T [/tex] of the function [tex] y = \sin(bx) [/tex] is given by:

[tex] T = \dfrac{2\pi}{|b|} [/tex]

For the function [tex] y = 3 \sin(2x) [/tex], [tex] b = 2 [/tex].

Therefore, the period [tex] T [/tex] is:

[tex] T = \dfrac{2\pi}{|2|} \\\\ = \dfrac{\pi}{1} \\\\= \pi [/tex]

So, the period of the function [tex] y = 3 \sin(2x) [/tex] is [tex] \pi [/tex] radians.