Respuesta :

points: (3, 7) and (-1, -1)

slope (m) :

[tex]\sf \dfrac{y_2-y_1}{x_2-x_1}[/tex]

========

[tex]\hookrightarrow \dfrac{-1-7}{-1-3}[/tex]

[tex]\hookrightarrow \dfrac{-8}{-4}[/tex]

[tex]\hookrightarrow 2[/tex]

Equation:

[tex]\sf y-y_1 = m(x-x_1)[/tex]

==============

[tex]\rightarrow \sf y-7 = 2(x-3)[/tex]

[tex]\rightarrow \sf y = 2x-6+7[/tex]

[tex]\rightarrow \sf y = 2x+1[/tex]

Ver imagen fieryanswererft

Answer:

[tex]y = 2x- 1[/tex]

Step-by-step explanation:

To determine which equation passes through the points (3, 7) and (-1, -1), we need to determine the slope of the equation. Then, we shall use point slope form to determine the equation of the line.

Determining the slope of the line:

[tex]\text{Slope} = \dfrac{\text{Rise}}{\text{Run} } =\dfrac{\text{y}_{2} - \text{y}_{1} }{\text{x}_{2} - \text{x}_{1} }[/tex]

Substituting the points in the slope formula:

[tex]\text{Slope} =\dfrac{-1 - 7 }{-1- 3 }[/tex]

Simplifying the slope:

[tex]\text{Slope} =\dfrac{-1 - 7 }{-1- 3 }[/tex]

[tex]\text{Slope} =\dfrac{-8}{-4 } = 2[/tex]

Determining the equation of the line:

We shall use point slope form to determine the equation of the line.

[tex]\text{Point slope form:} \ y - y_{1} = m(x- x_{1} )[/tex]

Substitute the slope and the coordinates of any two points stated above.

[tex]y -7= 2(x- 3 ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\text{Using the point (3,7)}][/tex]

Simplify the equation and organize it to slope intercept form:

[tex]y -7= 2x- 6[/tex]

[tex]y = 2x- 6 + 7[/tex]

[tex]y = 2x+ 1[/tex]