Respuesta :
points: (3, 7) and (-1, -1)
slope (m) :
[tex]\sf \dfrac{y_2-y_1}{x_2-x_1}[/tex]
========
[tex]\hookrightarrow \dfrac{-1-7}{-1-3}[/tex]
[tex]\hookrightarrow \dfrac{-8}{-4}[/tex]
[tex]\hookrightarrow 2[/tex]
Equation:
[tex]\sf y-y_1 = m(x-x_1)[/tex]
==============
[tex]\rightarrow \sf y-7 = 2(x-3)[/tex]
[tex]\rightarrow \sf y = 2x-6+7[/tex]
[tex]\rightarrow \sf y = 2x+1[/tex]

Answer:
[tex]y = 2x- 1[/tex]
Step-by-step explanation:
To determine which equation passes through the points (3, 7) and (-1, -1), we need to determine the slope of the equation. Then, we shall use point slope form to determine the equation of the line.
Determining the slope of the line:
[tex]\text{Slope} = \dfrac{\text{Rise}}{\text{Run} } =\dfrac{\text{y}_{2} - \text{y}_{1} }{\text{x}_{2} - \text{x}_{1} }[/tex]
Substituting the points in the slope formula:
[tex]\text{Slope} =\dfrac{-1 - 7 }{-1- 3 }[/tex]
Simplifying the slope:
[tex]\text{Slope} =\dfrac{-1 - 7 }{-1- 3 }[/tex]
[tex]\text{Slope} =\dfrac{-8}{-4 } = 2[/tex]
Determining the equation of the line:
We shall use point slope form to determine the equation of the line.
[tex]\text{Point slope form:} \ y - y_{1} = m(x- x_{1} )[/tex]
Substitute the slope and the coordinates of any two points stated above.
[tex]y -7= 2(x- 3 ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\text{Using the point (3,7)}][/tex]
Simplify the equation and organize it to slope intercept form:
[tex]y -7= 2x- 6[/tex]
[tex]y = 2x- 6 + 7[/tex]
[tex]y = 2x+ 1[/tex]