One liter of N (g) at 2.1 bar and two liters of Ar(g) at 3.4 bar are mixed in a 4.0-L 2 flask to form an ideal-gas mixture. Calculate the value of the final pressure of the mixture if the initial and final temperature of the gases are the same. Repeat this calculation if the initial temperatures of the N (g) and Ar(g) are 304 K and 402 K, respectively, and the final 2 temperature of the mixture is 377 K. (Assume ideal-gas behavior.)

Respuesta :

Answer:

Explanation:

From the information given:

Step 1:

Determine the partial pressure of each gas at total Volume (V) = 4.0 L

So, using:

[tex]\text{The new partial pressure for }N_2 \ gas}[/tex]

[tex]P_1V_1=P_2V_2[/tex]

[tex]P_2=\dfrac{P_1V_1}{V_2} \\ \\ P_2=\dfrac{2.1 \ bar \times 1\ L}{4.0 \ L} \\ \\ P_2 = 0.525 \ bar[/tex]

[tex]\text{The new partial pressure for }Ar \ gas}[/tex]

[tex]P_2=\dfrac{P_1V_1}{V_2} \\ \\ P_2=\dfrac{3.4 \ bar \times 2 \ L}{4.0 \ L} \\ \\ P_2 = 1.7 \ bar[/tex]

[tex]Total pressure= P [N_2] + P[Ar] \ \\ \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (0.525 + 1.7)Bar \\ \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 2.225 \ Bar[/tex]

Now, to determine the final pressure using different temperature; to also achieve this, we need to determine the initial moles of each gas.

According to Ideal gas Law.

[tex]2.1 \ bar = 2.07 \ atm \\ \\3.4 \ bar = 3.36 \ atm[/tex]

For moles Nā‚‚:

[tex]PV = nRT \\ \\ n = \dfrac{PV}{RT}[/tex]

[tex]n = \dfrac{2.07 \ atm \times 1 \ L }{0.08206 \ L .atm. per. mol. K \times 304 \ K}[/tex]

[tex]n = 0.08297 \ mol \ N_2[/tex]

For moles of Ar:

[tex]PV = nRT \\ \\ n = \dfrac{PV}{RT}[/tex]

[tex]n = \dfrac{3.36 \ atm \times 1 \ 2L }{0.08206 \ L .atm. per. mol. K \times 377 \ K}[/tex]

[tex]n = 0.2172 \ mol \ Ar[/tex]

[tex]\mathtt{total \ moles = moles \ of \ N_2 + moles \ of \ Ar}[/tex]

[tex]=0.08297 mol + 0.2037 mol \\ = 0.2867 mol gases[/tex]

Finally;

The final pressure of the mixture is:

[tex]PV = nRT \\ \\ P = \dfrac{nRT}{V} \\ \\ P = \dfrac{0.2867 \ mol \times 0.08206 \ L .atm/mol .K\times 377 K}{4.0 \ L}[/tex]

P = 2.217 atm

P ā‰… 2.24 bar