Answer:
See Explanation
Step-by-step explanation:
Incomplete question as the function is not given. So, I will give a general solution
Required
Determine the average rate of change from t = 2 to 4
Average rate of change is :
[tex]Rate = \frac{f(b) - f(a)}{b - a}[/tex]
In this case: a = 2 and b = 4
So, we have:
[tex]Rate = \frac{f(4) - f(2)}{4 - 2}[/tex]
[tex]Rate = \frac{f(4) - f(2)}{2}[/tex]
Assume that the exponential function is:
[tex]f(t) = 3^{-t[/tex]
f(4) and f(2) will be:
[tex]\\ f(4) = 3^{-4} = \frac{1}{81}[/tex]
[tex]f(2) = 3^{-2} = \frac{1}{9}[/tex]
So:
[tex]Rate = \frac{f(4) - f(2)}{2}[/tex]
[tex]Rate = \frac{\frac{1}{81} - \frac{1}{9}}{2}[/tex]
Take LCM
[tex]Rate = \frac{\frac{1 - 9}{81}}{2}[/tex]
[tex]Rate = \frac{-\frac{8}{81}}{2}[/tex]
[tex]Rate = -\frac{8}{81}*\frac{1}{2}[/tex]
[tex]Rate = -\frac{4}{81}[/tex]
So, the average rate of change is a decrease of 4/81