Respuesta :

Answer:

You have to apply Basic Trigonometric Identities :

[tex] {sec}^{2} (θ) = {tan}^{2} (θ)+ 1[/tex]

So for this question :

[tex] {sec}^{2} (a) - 1 - {tan}^{2} (a) = 0[/tex]

[tex]LHS = {sec}^{2} (a) - 1 - {tan}^{2}(a) [/tex]

[tex]LHS = {tan}^{2} (a) + 1 - 1 - {tan}^{2} (a)[/tex]

[tex]LHS = 0[/tex]

[tex] LHS = RHS \: (proven)[/tex]