Respuesta :
1.
-2(a + 6) = -2 · a - 2 · 6 = -2a - 12
2.
-22:
whole numbers
rational numbers
integers
3.
6 · (b - p) = 6(b - p)
4.
[5(14 - 2)²]/2 = (5 · 12²)/2 = (5 · 144)/2 = 720/2 = 360
5.
u + xy
u = 18; x = 10; y = 8, subtitute
18 + 10 · 8 = 18 + 80 = 98
6.
A = 479 ft²;
a - length of a side
A = a²
therefore
a² = 479 ⇒ a = √479 ⇒ a ≈ 21.886 ⇒ 22 (ft)
7.
(7 + 5) + 4 · 13 - 2 = 12 + 52 - 2 = 64 - 2 = 62
-2(a + 6) = -2 · a - 2 · 6 = -2a - 12
2.
-22:
whole numbers
rational numbers
integers
3.
6 · (b - p) = 6(b - p)
4.
[5(14 - 2)²]/2 = (5 · 12²)/2 = (5 · 144)/2 = 720/2 = 360
5.
u + xy
u = 18; x = 10; y = 8, subtitute
18 + 10 · 8 = 18 + 80 = 98
6.
A = 479 ft²;
a - length of a side
A = a²
therefore
a² = 479 ⇒ a = √479 ⇒ a ≈ 21.886 ⇒ 22 (ft)
7.
(7 + 5) + 4 · 13 - 2 = 12 + 52 - 2 = 64 - 2 = 62
1) [tex](-2)\cdot (a+6)[/tex] is equivalent to [tex]-2\cdot a -12[/tex].
2) The number [tex]-22[/tex] is both an Integer and a Rational Number.
3) 6 times the difference of b and p is equivalent to [tex]6\cdot (b-p)[/tex].
4) [tex]\frac{5\cdot (14-2)^{2}}{2}[/tex] is equivalent to [tex]360[/tex].
5) [tex]u + x\cdot y[/tex] is equal to 98.
6) The side length of the Square is approximately 22 feet.
7) [tex](7+5) + 4\cdot 13 - 2[/tex] is equivalent to [tex]62[/tex].
1) In this question we proceed to use Algebra methods to find an equivalent Expression:
[tex](-2)\cdot (a+6)[/tex]
[tex]-2\cdot a -12[/tex]
Hence, [tex](-2)\cdot (a+6)[/tex] is equivalent to [tex]-2\cdot a -12[/tex].
2) The number [tex]-22[/tex] is both an Integer and a Rational Number. Integers comprises Whole Numbers with negative Sign and every Integer has its equivalent Rational Number.
3) In this question, we are require to translate a Sentence into an Algebra expression:
"6 times the difference of b and p"
[tex]6\cdot (b-p)[/tex]
6 times the difference of b and p is equivalent to [tex]6\cdot (b-p)[/tex].
4) In this question, we proceed to simplify the following Rational Number into its most simple form, in this case, a Whole Number:
[tex]\frac{5\cdot (14-2)^{2}}{2}[/tex]
[tex]\frac{5\cdot 12^{2}}{2}[/tex]
[tex]\frac{720}{2}[/tex]
[tex]360[/tex]
[tex]\frac{5\cdot (14-2)^{2}}{2}[/tex] is equivalent to [tex]360[/tex].
5) In this question we evaluate a given Function. If we know that [tex]z = u + x\cdot y[/tex], [tex]u = 18[/tex], [tex]x = 10[/tex] and [tex]y = 8[/tex], then the result is:
[tex]z = u + x\cdot y[/tex]
[tex]z = 18 + 10\cdot 8[/tex]
[tex]z = 98[/tex]
In a nutshell, [tex]u + x\cdot y[/tex] is equal to 98.
6) From Geometry we know that the Area of a Square can be determined by this formula:
[tex]A = x^{2}[/tex]
Where:
[tex]A[/tex] - Area, in square feet.
[tex]x[/tex] - Side length, in feet.
If we know that [tex]A = 479\,ft^{2}[/tex], then the side length of the square is:
[tex]x = \sqrt{A}[/tex]
[tex]x = \sqrt{479\,ft^{2}}[/tex]
[tex]x\approx 21.886\,ft^{2}[/tex]
The side length of the Square is approximately 22 feet.
7) In this question, we need to Simplify the given Expression by Algebra means:
[tex](7+5) + 4\cdot 13 - 2[/tex]
[tex]12 +52 - 2[/tex]
[tex]62[/tex]
[tex](7+5) + 4\cdot 13 - 2[/tex] is equivalent to [tex]62[/tex].
Please see this question related to Algebra: https://brainly.com/question/14413003