Determine the velocity required for a moving object 2.00 x 10^4 m above the surface of Mars to escape from Mars's gravity. The mass of Mars is 6.42 x 10^23 kg, and its radius is 3.40 x 10^3 m.

Respuesta :

Answer:

Therefore the escape velocity from Mar's gravity is [tex]15.88 \times 10^4[/tex] m/s.

Explanation:

Escape velocity: Escape velocity is a the minimum velocity that a object needs to escape from the gravitational field of massive body.

[tex]V_{escape}=\sqrt{\frac{2GM}{R}}[/tex]

[tex]V_{escape}=[/tex] Escape velocity

G=Universal gravitational constant = 6.673×10⁻¹¹N m²/Kg²

M= mass of Mars = 6.42×10²³ kg

R = Radius of the Mars = 3.40×10³m

The escape velocity does not depend on the velocity of a object.

[tex]V_{escape}=\sqrt{\frac{2\times6.673\times 10^{-11}\times 6.42\times 10^{23}}{3.40\times10^3}}[/tex]

           [tex]=15.88 \times 10^4[/tex] m/s

Therefore the escape velocity from Mar's gravity is [tex]15.88 \times 10^4[/tex] m/s.