Answer:
Therefore the escape velocity from Mar's gravity is [tex]15.88 \times 10^4[/tex] m/s.
Explanation:
Escape velocity: Escape velocity is a the minimum velocity that a object needs to escape from the gravitational field of massive body.
[tex]V_{escape}=\sqrt{\frac{2GM}{R}}[/tex]
[tex]V_{escape}=[/tex] Escape velocity
G=Universal gravitational constant = 6.673×10⁻¹¹N m²/Kg²
M= mass of Mars = 6.42×10²³ kg
R = Radius of the Mars = 3.40×10³m
The escape velocity does not depend on the velocity of a object.
[tex]V_{escape}=\sqrt{\frac{2\times6.673\times 10^{-11}\times 6.42\times 10^{23}}{3.40\times10^3}}[/tex]
[tex]=15.88 \times 10^4[/tex] m/s
Therefore the escape velocity from Mar's gravity is [tex]15.88 \times 10^4[/tex] m/s.