Respuesta :

The coordinates of point D is (0, 7)

solution:

The midpoint M of CD has coordinates (2, 5)

Point C has coordinates (4, 3)

To find: coordinates of point D

The midpoint of line AB conatining points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] is given as:

[tex]\text {midpoint}(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)[/tex]

Here in this problem,

Midpoint (C, D) = (2, 5)

[tex]point C (x_1, y_1) = (4, 3)[/tex]

[tex]\text {point } D\left(x_{2}, y_{2}\right)=?[/tex]

Subsituting the values in formula we get,

[tex](2,5)=\left(\frac{4+x_{2}}{2}, \frac{3+y_{2}}{2}\right)[/tex]

On comparing both the sides we get,

[tex]2=\frac{4+x_{2}}{2} \text { and } 5=\frac{3+y_{2}}{2}[/tex]

[tex]\begin{array}{l}{4=4+x_{2} \text { and } 10=3+y_{2}} \\\\ {\text {Therefore } x_{2}=0 \text { and } y_{2}=7}\end{array}[/tex]

Thus the coordinates of point D is (0, 7)