Respuesta :
Answer:
[tex]\dfrac{3}{4}[/tex]
Step-by-step explanation:
The given expression is
[tex]a^3b^{-2}c^{-1}d[/tex]
We need to find the value of this expression in reduced fraction if a=2 b=4 c=10 d=15.
Substitute a=2 b=4 c=10 d=15 in given expression.
[tex](2)^3(4)^{-2}(10)^{-1}(15)[/tex]
Using the property of exponent, we get
[tex](2)^3\times \left(\dfrac{1}{4^2}\right)\times \left(\dfrac{1}{10}\right)\times (15)[/tex] [tex][\because a^{-n}=\dfrac{1}{a^n}][/tex]
[tex]8\times \left(\dfrac{1}{16}\right)\times \left(\dfrac{1}{10}\right)\times (15)[/tex]
Cancel out common factors.
[tex]1\times \left(\dfrac{1}{2}\right)\times \left(\dfrac{1}{2}\right)\times (3)[/tex]
[tex]\dfrac{3}{4}[/tex]
Hence, the required fraction is 3/4.