Respuesta :

atso

Answer:

Don't know if this is correct but, I think the answer is 3/4.

Answer:

[tex]\dfrac{3}{4}[/tex]

Step-by-step explanation:

The given expression is

[tex]a^3b^{-2}c^{-1}d[/tex]

We need to find the value of this expression in reduced fraction if a=2 b=4 c=10 d=15.

Substitute a=2 b=4 c=10 d=15 in given expression.

[tex](2)^3(4)^{-2}(10)^{-1}(15)[/tex]

Using the property of exponent, we get

[tex](2)^3\times \left(\dfrac{1}{4^2}\right)\times \left(\dfrac{1}{10}\right)\times (15)[/tex]         [tex][\because a^{-n}=\dfrac{1}{a^n}][/tex]

[tex]8\times \left(\dfrac{1}{16}\right)\times \left(\dfrac{1}{10}\right)\times (15)[/tex]

Cancel out common factors.

[tex]1\times \left(\dfrac{1}{2}\right)\times \left(\dfrac{1}{2}\right)\times (3)[/tex]

[tex]\dfrac{3}{4}[/tex]

Hence, the required fraction is 3/4.