divide the following complex numbers: (4-i)/(3+4i) ??

Given : [tex]\frac{(4 - i)}{(3 + 4i)}[/tex]
Multiplying and Dividing with (3 - 4i)
[tex]\implies\frac{(4 - i)(3 - 4i)}{(3 + 4i)(3 - 4i)}[/tex]
[tex]\implies \frac{(12 - 16i + 4i^2 - 3i)}{(9 - 16i^2)}[/tex]
We know that i² = -1
[tex]\implies \frac{(12 - 19i - 4)}{(9 + 16)}[/tex]
[tex]\implies \frac{8 - 19i}{25}[/tex]
[tex]\implies \frac{8}{25} - \frac{19}{25}i[/tex]
Option D is the Answer