Complete the identity. cos (alpha - beta)/cos alpha cos beta=?

A. 1 + cot α cot β

B. tan α tan β + cot β

C. 1 + tan α tan β

D. 1 + cot α tan β

Respuesta :

When you see a formula like this, try to operate, so you will see some identities sooner or later. In this case, we have a substraction identity:

[tex] \frac{cos ( \alpha - \beta )}{cos \alpha cos \beta } [/tex] = [tex] \frac{cos \alpha cos \beta + sin \alpha sin \beta }{cos \alpha cos \beta } [/tex] = 1 + tan α · tan β

Answer:

When you see a formula like this, try to operate, so you will see some identities sooner or later. In this case, we have a substraction identity:

\frac{cos ( \alpha  -  \beta )}{cos  \alpha cos  \beta }  =  \frac{cos   \alpha cos  \beta + sin \alpha sin  \beta }{cos  \alpha cos  \beta }  = 1 + tan α · tan β

Step-by-step explanation: