Respuesta :

if you're looking for f(x)

then 

g(x) = sqrt(4x + 4)
h(x) = sqrt(4x + 28)

h(x)-g(x) = 24

meaning that sqrt(24) must be the constant of f(x)

f(x) = x(sqrt(24))

h(x) = f(g(x)) = (sqrt(24))(sqrt(4x+4)) = sqrt(4x+4+24) = sqrt(4x+28)

Answer:

[tex]f(x) = \sqrt[4]{x+6}[/tex]

Step-by-step explanation:

Let [tex]h(x) = \sqrt[4]{x+7}[/tex] and [tex]g(x) = \sqrt[4]{x+1}[/tex]. By some algebraic handling:

[tex]h(x) = \sqrt[4]{(x+1)+6}[/tex]

[tex]h(x) = \sqrt[4]{(\sqrt[4]{x+1} )^{4}+6}[/tex]

But [tex]g(x) = \sqrt[4]{x+1}[/tex]. Therefore:

[tex]f(x) = \sqrt[4]{x+6}[/tex]