Respuesta :
We know that [tex]12=25-13[/tex] so:
[tex]x^2+10x+12=36\\\\(x^2+10x+25)-13=36\\\\(x+5)^2-13=36\\\\(x+5)^2-13-36=0\\\\(x+5)^2-49=0\\\\(x+5)^2-7^2=0\qquad\qquad\text{(difference of squares)}\\\\(x+5+7)(x+5-7)=0\\\\(x+12)(x-2)=0\\\\\\x+12=0\qquad\vee\qquad x-2=0\\\\\boxed{x=-12\qquad\vee\qquad x=2}[/tex]
[tex]x^2+10x+12=36\\\\(x^2+10x+25)-13=36\\\\(x+5)^2-13=36\\\\(x+5)^2-13-36=0\\\\(x+5)^2-49=0\\\\(x+5)^2-7^2=0\qquad\qquad\text{(difference of squares)}\\\\(x+5+7)(x+5-7)=0\\\\(x+12)(x-2)=0\\\\\\x+12=0\qquad\vee\qquad x-2=0\\\\\boxed{x=-12\qquad\vee\qquad x=2}[/tex]
x = -12, x= 2x
because you calculate the difference & any expressions multiplied by 1 remains the same so then you add the numbers 100+96, calculate the square root, separate the solutions, simplify the expression, and the final solutions are x = -12, x= 2x
because you calculate the difference & any expressions multiplied by 1 remains the same so then you add the numbers 100+96, calculate the square root, separate the solutions, simplify the expression, and the final solutions are x = -12, x= 2x