Answer:
Option B.
Step-by-step explanation:
The given represents a piecewise function.
The vertex form of a parabola is
[tex]g(x)=a(x-h)^2+k[/tex]
where, a is constant and (h,k) is vertex.
For x<1, it is a parabola with vertex (0,0). It means the equation of parabola is
[tex]f(x)=ax^2[/tex]
It passes through (1,1), so
[tex]1=a(1)^2[/tex]
[tex]a=1[/tex]
The value of a is 1. So, [tex]f(x)=x^2[/tex] for x<1.
For x>1, the function is a straight line which passes through the point (4,2) and (7,3).
If a line passes through two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex], then the equation of line is
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
So, the equation of line is
[tex]y-2=\frac{3-2}{7-4}(x-4)[/tex]
[tex]y-2=\frac{1}{3}(x-4)[/tex]
[tex]y=\frac{1}{3}x-\frac{4}{3}+2[/tex]
[tex]y=\frac{1}{3}x+\frac{2}{3}[/tex]
The function is [tex]f(x)=\frac{1}{3}x+\frac{2}{3}[/tex] for x>1.
There is an open circle at x=1. It means function is not defined for x=1.
The required function is
[tex]f(x)=\begin{cases}x^2 & \text{ if } x<1 \\ \frac{1}{3}x+\frac{2}{3} & \text{ if } x>1 \end{cases}[/tex]
Therefore, the correct option is B.