Solve for t. d=−16t2+4t t=12±41−4d‾‾‾‾‾‾√ t=8±1−4d‾‾‾‾‾‾√ t=18±1−4d√8 t=12±41−4d√2

Respuesta :

Answer:

[tex]t=\dfrac{1}{8}\left(1\pm\sqrt{1-4d}\right)[/tex]

Step-by-step explanation:

Rearranging your quadratic to standard form, you get ...

16t^2 -4t +d = 0

For the quadratic formula, you have ...

a = 16

b = -4

c = d

so the solution is ...

[tex]t=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\t=\dfrac{-(-4)\pm\sqrt{(-4)^2-4(16)(d)}}{2(16)}=\dfrac{4\pm 4\sqrt{1-4d}}{32}\\\\t=\dfrac{1}{8}\left(1\pm\sqrt{1-4d}\right)[/tex]

Answer:

C. [tex]t=\frac{1}{8}\pm\frac{\sqrt{(1-4\cdot d)}}{8}[/tex]

Step-by-step explanation:

We have been given an equation [tex]d=-16t^2+4t[/tex]. We are asked to solve for t.

To solve for t we will rewrite our given equation in general form of equation [tex](ax^2+bx+c=0)[/tex].

[tex]d+16t^2-4t=0[/tex]    

[tex]16t^2-4t+d=0[/tex]  

Since our given equation is quadratic, so we will use quadratic formula to solve for t.

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Upon comparing our given equation with general form of equation we can see,

[tex]a=16[/tex]

[tex]b=-4[/tex]

[tex]c=d[/tex]

Upon substituting our given values in quadratic formula we will get,

[tex]t=\frac{--4\pm\sqrt{(-4)^2-4\cdot 16\cdot d}}{2\cdot 16}[/tex]

[tex]t=\frac{4\pm\sqrt{16-64\cdot d}}{32}[/tex]

Upon factoring out 16 inside the square root we will get,

[tex]t=\frac{4\pm\sqrt{16(1-4\cdot d)}}{32}[/tex]

[tex]t=\frac{4\pm 4\sqrt{(1-4\cdot d)}}{32}[/tex]

[tex]t=\frac{4}{32}\pm\frac{4\sqrt{(1-4\cdot d)}}{32}[/tex]

[tex]t=\frac{1}{8}\pm\frac{\sqrt{(1-4\cdot d)}}{8}[/tex]

Therefore, the solutions of t are[tex]t=\frac{1}{8}\pm\frac{\sqrt{(1-4\cdot d)}}{8}[/tex] and option C is the correct choice.