Respuesta :
[tex] \dfrac{5^{11}}{5^{13}} [/tex]
[tex]= 5^{11-13}[/tex]
[tex]= 5^{-2}[/tex]
[tex]= \dfrac{1}{5^2}[/tex]
[tex]= \dfrac{1}{25}[/tex]
[tex]= 5^{11-13}[/tex]
[tex]= 5^{-2}[/tex]
[tex]= \dfrac{1}{5^2}[/tex]
[tex]= \dfrac{1}{25}[/tex]
Hi there!
Answer:
[tex] \frac{ 5^{11} }{5 ^{13} } = 5 ^{11-13} = 5^{-2} = \frac{1}{ 5^{2} } = \frac{1}{25} = 0.04[/tex]
Additional notes:
In the first step, I used the algebraic rules for the exponents in a fraction, which says the following:
[tex] \frac{ x^{a} }{ x^{b} } = x^{a-b} [/tex]
In the third step, I used the algebraic rules for negative exponents, which says the following:
[tex] x^{-a} = \frac{1}{ x^{a} } [/tex]
Answer:
[tex] \frac{ 5^{11} }{5 ^{13} } = 5 ^{11-13} = 5^{-2} = \frac{1}{ 5^{2} } = \frac{1}{25} = 0.04[/tex]
Additional notes:
In the first step, I used the algebraic rules for the exponents in a fraction, which says the following:
[tex] \frac{ x^{a} }{ x^{b} } = x^{a-b} [/tex]
In the third step, I used the algebraic rules for negative exponents, which says the following:
[tex] x^{-a} = \frac{1}{ x^{a} } [/tex]