f(-10)=12, x = -10, y = 12
f(16)=-1, x = 16, y = -1.
so, we have two points, let's check with that,
[tex]\bf \begin{array}{ccccccccc}
&&x_1&&y_1&&x_2&&y_2\\
% (a,b)
&&(~ -10 &,& 12~)
% (c,d)
&&(~ 16 &,& -1~)
\end{array}
\\\\\\
% slope = m
slope = m\implies
\cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{-1-12}{16-(-10)}\implies \cfrac{-1-12}{16+10}
\\\\\\
\cfrac{-13}{26}\implies -\cfrac{1}{2}[/tex]
[tex]\bf \stackrel{\textit{point-slope form}}{y- y_1= m(x- x_1)} y-12=-\cfrac{1}{2}[x-(-10)]
\\\\\\
y-12=-\cfrac{1}{2}(x+10)\implies y-12=-\cfrac{1}{2}x-5\implies y=-\cfrac{1}{2}x+7[/tex]