Respuesta :
L^2 = 55^2 - 27^2
L^2 = 3025 - 729
L^2 = 2296
L = sqrt(2296) = 47.92 inches
perimeter = 27*2 + 47.92*2 = 54 + 95.84 = 149.84 inches
L^2 = 3025 - 729
L^2 = 2296
L = sqrt(2296) = 47.92 inches
perimeter = 27*2 + 47.92*2 = 54 + 95.84 = 149.84 inches
Answer:
Perimeter of the rectangle = 149.84 inches.
Step-by-step explanation:
Given : A 55-inch television screen has a shape of a rectangle with a diagonal that is 55 inches long and a width of the screen is 27 inches.
To find : What is the perimeter of the screen?
Solution :
Diagonal of the rectangular screen is D=55 inches
The width of the screen is W= 27 inches
Rectangle all angles are of 90°
Apply Pythagorean theorem,
[tex]D^2=L^2+W^2[/tex]
[tex]55^2=L^2+27^2[/tex]
[tex]L^2 = 55^2 - 27^2[/tex]
[tex]L^2 = 3025 -729[/tex]
[tex]L^2 = 2296[/tex]
[tex]L = \sqrt{2296}[/tex]
[tex]L= 47.92 in.[/tex]
Length L=47.92
Perimeter of the rectangle = 2(L+W)
Perimeter of the rectangle = 2(47.92+27)
Perimeter of the rectangle = 2(74.92)
Perimeter of the rectangle = 149.84 inches.