For the rational equation, x^2+5x+6/x+3=1 , what is a valid value of x?.

Answer:
B. -1
Step-by-step explanation:
We have the equation, [tex]\frac{x^{2}+5x+6}{x+3}=1[/tex].
Now, factorizing the polynomial [tex]x^{2}+5x+6[/tex], we get that the factors of the polynomial are (x+3) and (x+2).
So, we get,
[tex]\frac{x^{2}+5x+6}{x+3}=1[/tex]
i.e. [tex]\frac{(x+3)(x+2)}{x+3}=1[/tex]
i.e. x + 2 = 1
i.e. x = -1.
Hence, we get that the value of x is -1.