Respuesta :

Answer:

The perimeter is equal to [tex]67.5\ in[/tex]

Step-by-step explanation:

In this problem we have a ratio of three numbers

[tex]2:3:4[/tex]

Let

x------> the first side (shortest side)

y------> the second side

z------> the third side

we know that

[tex]\frac{x}{y}=\frac{2}{3}[/tex] --> [tex]y=\frac{3}{2}x=1.5x[/tex] ----> equation A

[tex]\frac{x}{z}=\frac{2}{4}[/tex] ---> [tex]z=\frac{4}{2}x=2x[/tex] -----> equation B

[tex]x=15\ in[/tex]

Substitute the value of x in the equation A and equation B

[tex]y=1.5(15)=22.5\ in[/tex]

[tex]z=2(15)=30\ in[/tex]

Find the perimeter of triangle

Remember that the perimeter is equal to the sum of the length sides

[tex]P=x+y+z=15+22.5+30=67.5\ in[/tex]