Answer:
The measure of ∠1 is 68°, ∠2 is 112°, ∠3 is 112° and ∠5 is 68°.
Step-by-step explanation:
It is given that lines a, b, and c are parallel.
If a transversal line intersect the line parallel line, then corresponding angles are same.
If a transversal line intersect the line parallel line, then alternate exterior angles are same.
[tex]\angle 1=\angle 4=68^{\circ}[/tex] ( Alternate exterior angles)
[tex]\angle 1+\angle 2=180^{\circ}[/tex] (Supplementary angles)
[tex]68^{\circ}+\angle 2=180^{\circ}[/tex]
[tex]\angle 2=180^{\circ}-68^{\circ}=112^{\circ}[/tex]
[tex]\angle 3+\angle 4=180^{\circ}[/tex] (Supplementary angles)
[tex]68^{\circ}+\angle 3=180^{\circ}[/tex]
[tex]\angle 3=180^{\circ}-68^{\circ}=112^{\circ}[/tex]
[tex]\angle 4=\angle 5=68^{\circ}[/tex] (Corresponding angles)
Therefore the measure of ∠1 is 68°, ∠2 is 112°, ∠3 is 112° and ∠5 is 68°.