Respuesta :

18047
At every pi/2 that doesn't result in a whole number value of pi. so 3pi/2, 5pi/2, etc..

Answer:

[tex]y=\text{tan}(x)[/tex] will have asymptote, when [tex]\text{cos}(x)=0[/tex].

Step-by-step explanation:

We are asked to find the asymptotes of the function [tex]y=\text{tan}(x)[/tex].

We can represent tangent as [tex]\text{tan}(x)=\frac{\text{sin}(x)}{\text{cos}(x)}[/tex].

We know that a rational function is undefined, when denominator is zero. So our function will have asymptote, when [tex]\text{cos}(x)=0[/tex].

We know that [tex]\text{cos}(x)=0[/tex] at [tex]\pm \frac{\pi}{2}+n[/tex].