In a jump spike, a volleyball player slams the ball from overhead and toward the opposite floor. controlling the angle of the spike is difficult. suppose a ball is spiked from a height of 2.10 m with an initial speed of 17.0 m/s at a downward angle of 15.0°. how much farther on the opposite floor would it have landed if the downward angle were, instead, 7.0°?

Respuesta :

v ( initial ) = 20 m/s
h = 2.30 m
h = v y * t + g t ² / 2
d = v x * t
1 ) At α = 18°:
v y = 20 * sin 18° = 6.18 m/s
v x = 20 * cos 18° = 19.02 m/ s
2.30 = 6.18 t + 4.9 t²
4.9 t² + 6.18 t - 2.30 = 0
After solving the quadratic equation ( a = 4.9, b = 6.18, c = - 2.3 ):
t 1/2 = (- 6.18 +/- √( 6.18² - 4 * 4.9 * (-2.3)) ) / ( 2 * 4.9 )  
t = 0.3 s
d 1 = 19.02 m/s * 0.3 s = 5.706 m
2 ) At  α = 8°:
v y = 20* sin 8° = 2.78 m/s
v x = 20* cos 8° = 19.81 m/s
2.3 = 2.78 t + 4.9 t² 
4.9 t² + 2.78 t - 2.3 = 0
t = 0.46 s
d 2 = 19.81 * 0.46 = 9.113 m
The distance is:
d 2 - d 1 = 9.113 m - 5.706 m = 3.407 m

GOOD LUCK AND HOPE IT HELPS U

The difference in horizontal distance of the ball is required.

The ball would have landed 2.5 m farther.

h = Height of spike = 2.1 m

u = Initial velocity = 17 m/s

[tex]\theta[/tex] = Angle = [tex]15^{\circ}[/tex]

Displacement in y direction is given by

[tex]h=u_yt_1+\dfrac{1}{2}a_yt_1^2\\\Rightarrow 2.1=17\sin 15t_1+\dfrac{1}{2}\times 9.81t_1^2\\\Rightarrow 4.905t_1^2+4.4t_1-2.1=0\\\Rightarrow 4905t_1^2+4400t_1-2100=0[/tex]

Solving the equation

[tex]t_1=\frac{-4400\pm \sqrt{4400^2-4\times4905\left(-2100\right)}}{2\times 4905}\\\Rightarrow t_1=0.34,-1.24[/tex]

The time taken by the ball to reach the ground is 0.34 s.

Displacement is given by

[tex]x_1=u_xt_1\\\Rightarrow x_1=17\cos 15\times 0.34\\\Rightarrow x_1=5.6\ \text{m}[/tex]

[tex]\theta=7^{\circ}[/tex]

Displacement in y direction is given by

[tex]h=u_yt_2+\dfrac{1}{2}a_yt_2^2\\\Rightarrow 2.1=17\sin 7t_2+\dfrac{1}{2}\times 9.81t_2^2\\\Rightarrow 4.905t_2^2+2.07t_2-2.1=0\\\Rightarrow 4905t_2^2+2070t_2-2100=0[/tex]

Solving the equation

[tex]t_2=\frac{-2070\pm \sqrt{2070^2-4\times4905\left(-2100\right)}}{2\times4905}\\\Rightarrow t_2=0.48,-0.89[/tex]

Displacement in x direction

[tex]x_2=u_xt_2\\\Rightarrow x_2=17\cos 7\times 0.48\\\Rightarrow x_2=8.1\ \text{m}[/tex]

Difference in distance is

[tex]\Delta x=x_2-x_1\\\Rightarrow \Delta x=8.1-5.6\\\Rightarrow \Delta x=2.5\ \text{m}[/tex]

The ball would have landed 2.5 m farther.

Learn more:

https://brainly.com/question/11049671

https://brainly.com/question/11273001