Respuesta :
Molar mass:
[tex]1 \ mol \ H_2O_2 = 34.0147 \ g \ H_2O_2[/tex]
Grams to moles:
[tex](210 \ g \ H_2O_2) * ( \frac{1 \ mol \ H_2O_2 }{34.0147 \ g \ H_2O_2}) = 6.17 \ mol \ H_2O_2[/tex]
Moles to atoms (Avogadro's number):
[tex]1 \ mol = 6.022 * 10^{22} \ particles [/tex]
[tex](6.17 \ mol \ H_2O_2) * (\frac{6.022 * 10^{22} \ molecules \ H_2O_2}{1 \ mol \ H_2O_2}) * ( \frac{2 \ atoms \ H}{molecule \ H_2O_2})[/tex]
Answer:
[tex]= 7.43 * 10^{23} \ H \ atoms[/tex]
[tex]1 \ mol \ H_2O_2 = 34.0147 \ g \ H_2O_2[/tex]
Grams to moles:
[tex](210 \ g \ H_2O_2) * ( \frac{1 \ mol \ H_2O_2 }{34.0147 \ g \ H_2O_2}) = 6.17 \ mol \ H_2O_2[/tex]
Moles to atoms (Avogadro's number):
[tex]1 \ mol = 6.022 * 10^{22} \ particles [/tex]
[tex](6.17 \ mol \ H_2O_2) * (\frac{6.022 * 10^{22} \ molecules \ H_2O_2}{1 \ mol \ H_2O_2}) * ( \frac{2 \ atoms \ H}{molecule \ H_2O_2})[/tex]
Answer:
[tex]= 7.43 * 10^{23} \ H \ atoms[/tex]
Answer:
Number of hydrogen atoms = [tex]7.44\times 10^{24}[/tex]
Explanation:
Given,
Mass of [tex]H_2O_2[/tex] = 210 g
Molar mass of [tex]H_2O_2[/tex] = 34.0147 g/mol
The formula for the calculation of moles is shown below:
[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]
Thus,
[tex]Moles= \frac{210\ g}{34.0147\ g/mol}[/tex]
[tex]Moles_{H_2O_2}= 6.1738\ mol[/tex]
From the formula of [tex]H_2O_2[/tex],
1 mole of [tex]H_2O_2[/tex] contains 2 moles of hydrogen atoms
6.1738 moles of [tex]H_2O_2[/tex] contains 2*6.1738 moles of hydrogen atoms
Moles of hydrogen = 12.3476 mole
Avogadro constant:- [tex]N_a=6.023\times 10^{23}\ mol^{-1}[/tex]
1 mole contains [tex]6.023\times 10^{23}[/tex] atoms
12.3476 moles contains [tex]12.3476\times 6.023\times 10^{23}[/tex] atoms
Number of hydrogen atoms = [tex]7.44\times 10^{24}[/tex]