Respuesta :

Molar mass:

[tex]1 \ mol \ H_2O_2 = 34.0147 \ g \ H_2O_2[/tex]

Grams to moles:

[tex](210 \ g \ H_2O_2) * ( \frac{1 \ mol \ H_2O_2 }{34.0147 \ g \ H_2O_2}) = 6.17 \ mol \ H_2O_2[/tex]

Moles to atoms (Avogadro's number):
[tex]1 \ mol = 6.022 * 10^{22} \ particles [/tex]
[tex](6.17 \ mol \ H_2O_2) * (\frac{6.022 * 10^{22} \ molecules \ H_2O_2}{1 \ mol \ H_2O_2}) * ( \frac{2 \ atoms \ H}{molecule \ H_2O_2})[/tex]

Answer:
[tex]= 7.43 * 10^{23} \ H \ atoms[/tex]

Answer:

Number of hydrogen atoms =  [tex]7.44\times 10^{24}[/tex]

Explanation:

Given,

Mass of [tex]H_2O_2[/tex] = 210 g

Molar mass of [tex]H_2O_2[/tex] = 34.0147 g/mol

The formula for the calculation of moles is shown below:

[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]

Thus,

[tex]Moles= \frac{210\ g}{34.0147\ g/mol}[/tex]

[tex]Moles_{H_2O_2}= 6.1738\ mol[/tex]

From the formula of [tex]H_2O_2[/tex],

1 mole of [tex]H_2O_2[/tex] contains 2 moles of hydrogen atoms

6.1738 moles of [tex]H_2O_2[/tex] contains 2*6.1738 moles of hydrogen atoms

Moles of hydrogen = 12.3476 mole

Avogadro constant:-  [tex]N_a=6.023\times 10^{23}\ mol^{-1}[/tex]

1 mole contains [tex]6.023\times 10^{23}[/tex] atoms

12.3476 moles contains [tex]12.3476\times 6.023\times 10^{23}[/tex] atoms

Number of hydrogen atoms =  [tex]7.44\times 10^{24}[/tex]