[tex]x=15[/tex], [tex]y=12[/tex]; the pairs of angles are alternate interior angles, meaning that their degrees are equivalent. To find the value of [tex]x[/tex] and [tex]y[/tex], you need to set the degrees as equal to the expressions. [tex]4x+2=62[/tex] and [tex]12y=144[/tex]. Then, solve for the variables by isolating [tex]x[/tex] and [tex]y[/tex] on each side. [tex]144[/tex] ÷ [tex]12 = y[/tex], which means [tex]12=y[/tex], and [tex]62-2=60[/tex], [tex]60 [/tex] ÷ [tex]4=15[/tex] and therefore, [tex]15=x[/tex].