Find a polynomial with integer coefficients that satisfies the given conditions.
P has degree 2 and zeros 5 + i and 5 − i.

Respuesta :

[tex]\bf \textit{difference of squares} \\ \quad \\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b) \\\\\\ \textit{also recall that }~~~i^2=-1\\\\ -------------------------------\\\\ \begin{cases} x=5+i\implies &x-5-i=0\\ x=5-i\implies &x-5+i=0 \end{cases} \\\\\\ (x-5-i)(x-5+i)=\stackrel{\textit{original polynomial}}{0} \\\\\\\ [(x-5)~~-~~i]~[(x-5)~~+~~i]=0\implies [(x-5)^2~~-~~i^2]=0 \\\\\\ (x^2-10x+25)~~-~~(-1)=0\implies x^2-10x+25+1=y \\\\\\ x^2-10x+26=y[/tex]