Respuesta :
1) function: P = 120 (1.0160)^t, t in years
2) weekly function
w = 52 * t = 52t
=> P(w) = 120 (1.016)^ (52w)
3) growth rate = d P(w) / dw
d P(w) / dw = 120 * 52 * [ 1.016 ^ (52w) ] = 6240 [(1.016) ^ (52w) ]
4) solution of the equation
Separate variables
d P(w) = [ 6240 (1.016) ^ (52w)] dw
integrate from w = 0 until w
P(w) - Po = 7599.84 e ^ (0.82514w)
P(w) = Po + 7599.84 e ^ (0.82514w)
2) weekly function
w = 52 * t = 52t
=> P(w) = 120 (1.016)^ (52w)
3) growth rate = d P(w) / dw
d P(w) / dw = 120 * 52 * [ 1.016 ^ (52w) ] = 6240 [(1.016) ^ (52w) ]
4) solution of the equation
Separate variables
d P(w) = [ 6240 (1.016) ^ (52w)] dw
integrate from w = 0 until w
P(w) - Po = 7599.84 e ^ (0.82514w)
P(w) = Po + 7599.84 e ^ (0.82514w)
Answer:
r= .016*100=1.6
R= 1.6%
R=1.6 over 52*100= 0.03076923077 per week
Growth= 0.03
function= P=120(1.016^1/52)^52t
Hope this helps! ^-^