Respuesta :

C.
when divide  a fraction, multiply the reciprocal (the upside down) of the fraction.

Answer:

Option C is correct

the expression which is equivalent to the expression [tex]\frac{\frac{c^2-4}{c+3}}{\frac{c+2}{3(c^2-9)} }[/tex]   is,  [tex]\frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2}[/tex]

Explanation:

Given: The expression is:  [tex]\frac{\frac{c^2-4}{c+3}}{\frac{c+2}{c^2-9} }[/tex]

We remember that dividing fraction a by fraction b is the same as multiplying fraction a by the reciprocal of fraction b or vice versa.

Using expression:   [tex]\frac{\frac{p}{q}}{\frac{r}{s} }[/tex]

⇒ [tex]\frac{p}{q} \cdot \frac{s}{r}[/tex]

Let p=[tex]c^2-4[/tex], q=c+3 , r =c+2 and s = [tex]3(c^2-9)[/tex]

then;

 [tex]\frac{\frac{p}{q}}{\frac{r}{s} }[/tex] = [tex]\frac{p}{q} \cdot \frac{s}{r}[/tex]

= [tex]\frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2}[/tex]

Therefore, the expression which is equivalent to the given  expression  is,  

[tex]\frac{c^2-4}{c+3} \cdot \frac{3(c^2-9)}{c+2}[/tex]