Respuesta :

x=(4±(√16-12))/2
x=(4±√4))2
x=(4±2)/2

x=4+2/2       and        x=(4-2)/2 
x=6/2           and        x=2/2
x=3               and       x=1

Answer:

The solution of the equation is at x=1 and 3.

Step-by-step explanation:

Given : Equation [tex]x^2-4x+3=0[/tex]

To find : Solve the equation using the quadratic formula?

Solution :

The general form of the quadratic equation is  [tex]ax^2+bx+c=0[/tex]  having solution [tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

On comparing with given equation, [tex]x^2-4x+3=0[/tex]

Here, a=1 , b=-4 and c=3

Substitute in the solution,

[tex]x=\frac{-(-4)\pm\sqrt{(-4)^2-4(1)(3)}}{2(1)}[/tex]

[tex]x=\frac{4\pm\sqrt{16-12}}{2}[/tex]  

[tex]x=\frac{4\pm\sqrt{4}}{2}[/tex]  

[tex]x=\frac{4\pm2}{2}[/tex]  

[tex]x=2\pm1[/tex]  

[tex]x=3,1[/tex]  

Therefore, The solution of the equation is at x=1 and 3.