Respuesta :

1. (7x+3)(4x−5) =

multiply everything by each other than combine like terms

= 28x^2-23x-15

2. 49x^8−16y^14

rewrite 49x^8 as (7x^4)^2, rewrite -16y^14 as -(4y^7)^2

 then factor to get (7x^4 +4y^7)(7x^4 -4y^7)


3. 7x^2+16x+4  = (7x+2)(x+2)


 

Answer:

[tex](a) 28x^2-23x-15[/tex]

[tex](b) (7x^4-4y^{7})(7x^4+4y^{7})[/tex]

[tex](c)(7x+2)(x+2)[/tex]

Step-by-step explanation:

1. (7x+3)(4x−5)

First, Distribute

(7x+3)(4x−5) = 7x(4x-5)+3(4x-5)

Next, we expand the brackets

[tex]7x(4x-5)+3(4x-5)=28x^2-35x+12x-15[/tex]

Simplifying like terms

[tex](7x+3)(4x-5)=28x^2-23x-15[/tex]

2. [tex]49x^8-16y^{14}[/tex]

Looking at the terms, you notice that each of the numbers is a perfect square.

[tex]49x^8-16y^{14}=7^{2}x^8-4^2y^{14}[/tex]

Next, we express the variable terms as a power of 2. This is to enable us apply a particular principle in factorization.

[tex]7^{2}(x^4)^2-4^2(y^{7})^2= (7x^4)^{2}-(4y^{7})^2[/tex]

Now, we apply the Principle of Difference of Two Squares.

[tex]a^2-b^2=[/tex](a-b)(a+b)

Therefore:

[tex](7x^4)^{2}-(4y^{7})^2=(7x^4-4y^{7})(7x^4+4y^{7})[/tex]

3. [tex]7x^2+16x+4[/tex]

[tex]7x^2+16x+4 = 7x^2+14x+2x+4[/tex]

                    [tex]=7x(x+2)+2(x+2)\\ =(7x+2)(x+2)[/tex]