secθ=-25/24 so cosθ=-24/25, sinθ=7/25 (quadrant 2) [√1-(24/25)²=√(625-576)/625=√(49/625)=7/25]
sin2θ=2sinθcosθ=-2×7×24/625=-336/625=-0.5376.
cos2θ=1-2sin²θ=1-2×49/625=527/625=0.8432.
tan2θ=sin2θ/cos2θ=-336/527 (=-0.6376 approx.)
The length of the third side is 12 making the Pythagorean triangle 5-12-13 (5²+12²=13²).
Assuming sinθ=5/13, then cosθ=12/13. sin2θ=2sinθcosθ=120/169; cos2θ=1-2sin²θ=1-50/169=119/169.
tan2θ=120/119.
Pythagorean triangle is 7-24-25. sinθ=2sin(θ/2)cos(θ/2), cosθ=1-2sin²(θ/2).
sin²θ=4sin²(θ/2)cos²(θ/2)=4sin²(θ/2)(1-sin²(θ/2)).
49/625= 4sin²(θ/2)-4sin⁴(θ/2); 4sin⁴(θ/2)-4sin²(θ/2)+49/625=0.
sin⁴(θ/2)-sin²(θ/2)+49/2500=0=(sin²(θ/2)-49/50)(sin²(θ/2)-1/50).
cosθ=1-2sin²(θ/2); 24/25=1-2sin²(θ/2), sin²(θ/2)=1/50, sin(θ/2)=1/(5√2)=√2/10.
cos(θ/2)=√1-1/50=7√2/10; tan(θ/2)=1/7.
(sin(x)cos(x))²=sin²(2x)/4.
This can be written cot(x)(cot(x)+1)=0. So cot(x)=0, x=π/2, 3π/2; or cot(x)=-1=1/tan(x), x=3π/4, 7π/4.