Respuesta :
We're maximizing [tex]xyz[/tex] subject to [tex]x+y+z=120[/tex]. We have Lagrangian
[tex]L(x,y,z,\lambda)=xyz+\lambda(x+y+z-120)[/tex]
with partial derivatives (set to 0)
[tex]L_x=yz+\lambda=0\implies yz=-\lambda[/tex]
[tex]L_y=xz+\lambda=0\implies xz=-\lambda[/tex]
[tex]L_z=xy+\lambda=0\implies xy=-\lambda[/tex]
[tex]L_\lambda=x+y+z-120=0[/tex]
[tex]yz=xz\implies z(x-y)=0\implies z=0\text{ or }x=y[/tex]
[tex]xz=xy\implies x(y-z)=0\implies x=0\text{ or }y=z[/tex]
[tex]yz=xy\implies y(x-z)=0\implies y=0\text{ or }x=z[/tex]
Since [tex]x,y,z>0[/tex], we arrive at [tex]x=y=z[/tex], which means
[tex]x+y+z=3x=120\implies x=y=z=40[/tex]
and we get a maximum value of [tex]40^3=64000[/tex] for the product.
[tex]L(x,y,z,\lambda)=xyz+\lambda(x+y+z-120)[/tex]
with partial derivatives (set to 0)
[tex]L_x=yz+\lambda=0\implies yz=-\lambda[/tex]
[tex]L_y=xz+\lambda=0\implies xz=-\lambda[/tex]
[tex]L_z=xy+\lambda=0\implies xy=-\lambda[/tex]
[tex]L_\lambda=x+y+z-120=0[/tex]
[tex]yz=xz\implies z(x-y)=0\implies z=0\text{ or }x=y[/tex]
[tex]xz=xy\implies x(y-z)=0\implies x=0\text{ or }y=z[/tex]
[tex]yz=xy\implies y(x-z)=0\implies y=0\text{ or }x=z[/tex]
Since [tex]x,y,z>0[/tex], we arrive at [tex]x=y=z[/tex], which means
[tex]x+y+z=3x=120\implies x=y=z=40[/tex]
and we get a maximum value of [tex]40^3=64000[/tex] for the product.
Using Lagrange multipliers, it is found that the numbers are: x = y = z = 40.
-----------------------
The product is that we want to maximize is:
[tex]f(x,y,z) = xyz[/tex]
The constraint is:
[tex]x + y + z = 120[/tex]
[tex]g(x,y,z) = x + y + z - 120[/tex]
The gradients are:
[tex]\nabla_f = (yz, xz, xy)[/tex]
[tex]\nabla_g = (1,1,1)[/tex]
Their relation is:
[tex]\nable_f = \lambda\nabla_g[/tex]
[tex](yz, xz, xy) = \lambda(1,1,1)[/tex]
Then, the system is:
[tex]yz = \lambda[/tex]
[tex]xz = \lambda[/tex]
[tex]xy = \lambda[/tex]
And thus, x = y = z.
[tex]x + y + z = 120[/tex]
Thus:
[tex]3x = 120[/tex]
[tex]x = \frac{120}{3}[/tex]
[tex]x = 40[/tex]
Thus, the values are x = y = z = 40.
A similar problem is given at https://brainly.com/question/4609414