Respuesta :
z^2 - z^2+3z+2
-------------------------
z+1 z(z+3)
z(z+1)(z+3) is the lcd
z^2(z^2+3z)- (z+2)(z+1)(z+1)
--------------------------------------...
z(z+1)(z+3)
z^4+3z^3- (z^2+3z+2)(z+1)
z^2+3z+2
z+1
----------------
z^2+3z+2
z^3+3z^2+2z
-------------------------
z^3+4z^2+5z+2
z^4+3z^3-z^3-4z^2-5z-2
ans . z^4+2z^3-4z^2-5z-2
-------------------------------------
z(z+1)(z+3)
z ≠0, -1 or -3
Answer:
Hence, the product is:
[tex]\dfrac{z(z+2)}{z+3}[/tex] such that: z≠ -1,0 and -3.
Step-by-step explanation:
We are asked to represent the product in the simplest form along with the restrictions applied to z.
We have to evaluate the expression:
[tex]\dfrac{z^2}{z+1}\times \dfrac{z^2+3z+2}{z^2+3z}\\\\=\dfrac{z^2}{z+1}\times \dfrac{z^2+3z+2}{z(z+3)}[/tex]
Hence,
z≠ -1,0 and -3.
Since, otherwise the denominator will be equal to zero and hence the product will not be defined.
Now, we know that:
[tex]z^2+3z+2=z^2+2z+z+2\\\\z^2+3z+2=z(z+2)+1(z+2)\\\\z^2+3z+2=(z+1)(z+2)[/tex]
Hence,
[tex]\dfrac{z^2}{z+1}\times \dfrac{z^2+3z+2}{z^2+3z}=\dfrac{z^2}{z+1}\times \dfrac{(z+1)(z+2)}{z(z+3)}\\\\=\dfrac{z(z+2)}{z+3}[/tex]
( since z and (z+1) term is cancelled as it was same in numerator and denominator)
Hence, the product is:
[tex]\dfrac{z(z+2)}{z+3}[/tex] such that: z≠ -1,0 and -3.