Respuesta :

W0lf93
z^2 - z^2+3z+2 ------------------------- z+1 z(z+3) z(z+1)(z+3) is the lcd z^2(z^2+3z)- (z+2)(z+1)(z+1) --------------------------------------... z(z+1)(z+3) z^4+3z^3- (z^2+3z+2)(z+1) z^2+3z+2 z+1 ---------------- z^2+3z+2 z^3+3z^2+2z ------------------------- z^3+4z^2+5z+2 z^4+3z^3-z^3-4z^2-5z-2 ans . z^4+2z^3-4z^2-5z-2 ------------------------------------- z(z+1)(z+3) z ≠0, -1 or -3

Answer:

Hence, the product is:

[tex]\dfrac{z(z+2)}{z+3}[/tex] such that: z≠ -1,0 and -3.

Step-by-step explanation:

We are asked to represent the product in the simplest form along with the restrictions applied to z.

We have to evaluate the expression:

[tex]\dfrac{z^2}{z+1}\times \dfrac{z^2+3z+2}{z^2+3z}\\\\=\dfrac{z^2}{z+1}\times \dfrac{z^2+3z+2}{z(z+3)}[/tex]

Hence,

z≠ -1,0 and -3.

Since, otherwise the denominator will be equal to zero and hence the product will not be defined.

Now, we know that:

[tex]z^2+3z+2=z^2+2z+z+2\\\\z^2+3z+2=z(z+2)+1(z+2)\\\\z^2+3z+2=(z+1)(z+2)[/tex]

Hence,

[tex]\dfrac{z^2}{z+1}\times \dfrac{z^2+3z+2}{z^2+3z}=\dfrac{z^2}{z+1}\times \dfrac{(z+1)(z+2)}{z(z+3)}\\\\=\dfrac{z(z+2)}{z+3}[/tex]

( since z and (z+1) term is cancelled as it was same in numerator and denominator)

Hence, the product is:

[tex]\dfrac{z(z+2)}{z+3}[/tex] such that: z≠ -1,0 and -3.