Respuesta :

We are given D (7, -3) and D'(2, 5).

SAppy the transformation
D'(x,y) → D(x-5, y+8).
Then 
x=7 → x=7-5 = 2
y=-3 → y=-3+8 = 5

Answer: D (x-5, y+8) → D'
ANSWER

The translation rule is

[tex]D(x,y)\rightarrow D'(x-5,y+8).[/tex]

EXPLANATION

Let [tex] \binom{x}{y} [/tex]
be the translation vector that maps [tex]D(7,-3)[/tex]
on to [tex]D'(2,5)[/tex].

Then we have the vector equation,

[tex] \binom{7}{ - 3} + \binom{x}{y} = \binom{2}{5} [/tex]

We now solve for
[tex] \binom{x}{y} [/tex]

[tex] \binom{x}{y} = \binom{2}{5} - \binom{7}{ - 3}[/tex]

This simplifies to,

[tex] \binom{x}{y} = \binom{2 - 7}{5 - - 3} [/tex]

[tex] \binom{x}{y} = \binom{2 - 7}{5 + 3} [/tex]

[tex] \binom{x}{y} = \binom{ - 5}{8} [/tex]

Therefore the translation rule is,

[tex]D(x,y)\rightarrow D'(x-5,y+8)[/tex]