Respuesta :

write it down again
you mean (3-2√11)/(2+√11) I guess
(3-2√11)(2-√11)/(2+√11)(2-√11)
(28-7√11)/(-7)
therefore the answer is √11-4

ANSWER

[tex] \sqrt{11} - 4[/tex]


EXPLANATION

The given radical expression is

[tex] \frac{3 - 2 \sqrt{11} }{2 + \sqrt{11} } [/tex]

We rationalize the radical expression by multiplying both the numerator and denominator by the conjugate of
[tex]2 + \sqrt{11} [/tex]

which is

[tex]2 - \sqrt{11} [/tex]

This will give us,

[tex] \frac{3 - 2 \sqrt{11} }{2 + \sqrt{11} } \times \frac{2 - \sqrt{11} }{2 - \sqrt{11} } [/tex]


[tex] \frac{(3 - 2 \sqrt{11})(2 - \sqrt{11} ) }{(2 + \sqrt{11})(2 - \sqrt{11} ) }[/tex]
We expand the numerator and also apply difference of two squares to the denominator.


[tex] \frac{6 - 3 \sqrt{11} - 4 \sqrt{11} + 2(11)}{ {2}^{2} - { (\sqrt{11} )}^{2} } [/tex]

This simplifies to,


[tex] \frac{6- 3\sqrt{11} - 4 \sqrt{11} + 22}{ 4- 11} [/tex]


[tex] \frac{28- 7 \sqrt{11} }{ - 7} [/tex]


We now share the denominator for the numerators to obtain,


[tex] - \frac{28}{7} + \frac{7 \sqrt{11} }{7} [/tex]

This finally gives,

[tex] - 4 + \sqrt{11} = \sqrt{11} - 4[/tex]