Respuesta :

Remark: we are going to use the following identities:

i) cot(x)=cos(x)/sin(x)

ii) [tex] sin ^{2} x+cos^2 x=1 [/tex], 

iii) 1/ (sin x)  = csc(x)



x^2+1=cot^2(∅)+1=[cos(∅)/sin(∅)]^2+1         by identity i

=[cos^2(∅)]/[sin^2(∅)]+(sin^2∅)/(sin^2∅)

=[cos^2(∅)+sin^2(∅)]/ [sin^2(∅)]=1/ [sin^2(∅)]   by identity ii

=[ 1/ sin(∅)]^2=csc^2(∅)                  by identity iii


Answer: csc^2(∅)