ABCD is a parallelogram. A is the point (2,5), B is the point (8,8) and the diagonals intersect at (3.5, 2.5). What are the coordinates of C and D? How do I work this out?

Respuesta :

check the picture below.

so, we know that 3.5, 2.5 is the midpoint of each diagonal, keeping in mind that, in a parallelogram, the diagonals bisect each other, namely, they cut each other in two equal halves.

[tex]\bf \textit{middle point of 2 points }\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ 2}}\quad ,&{{ 5}})\quad % (c,d) C&({{ x}}\quad ,&{{ y}}) \end{array}\qquad % coordinates of midpoint \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)[/tex]

[tex]\bf \left( \cfrac{x+2}{2}~,~\cfrac{y+5}{2} \right)=\stackrel{midpoint}{(3.5,2.5)}\implies \begin{cases} \cfrac{x+2}{2}=3.5\\\\ x+2=7\\ \boxed{x=5}\\ ----------\\ \cfrac{y+5}{2}=2.5\\\\ y+5=5\\ \boxed{y=0} \end{cases}[/tex]

[tex]\bf -------------------------------\\\\ \textit{middle point of 2 points }\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) B&({{ 8}}\quad ,&{{ 8}})\quad % (c,d) D&({{ x}}\quad ,&{{ y}}) \end{array}\qquad % coordinates of midpoint \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)[/tex]

[tex]\bf \left( \cfrac{x+8}{2}~,~\cfrac{y+8}{2} \right)=\stackrel{midpoint}{(3.5,2.5)}\implies \begin{cases} \cfrac{x+8}{2}=3.5\\\\ x+8=7\\ \boxed{x=-1}\\ ----------\\ \cfrac{y+8}{2}=2.5\\\\ y+8=5\\ \boxed{y=-3} \end{cases}[/tex]
Ver imagen jdoe0001