Respuesta :
Answer:
x ≈ 0.123484
Step-by-step explanation:
You want the solution to the equation ...
[tex]10e^{8x+1}-3=70[/tex]
Exponential
Essentially, you want to "undo" what is done to the variable. First of all, this means isolating the exponential term.
[tex]10e^{8x+1}=73\qquad\text{add 3}\\\\e^{8x+1}=7.3\qquad\text{divide by 10}[/tex]
Logs
Now, you can take the log of both sides and solve the remaining 2-step linear equation.
[tex]8x+1=\ln(7.3)\qquad\text{take the natural log of both sides}\\\\8x = \ln(7.3)-1\qquad\text{subtract 1}\\\\x=\dfrac{\ln(7.3)-1}{8}\qquad\text{divide by 8}\\\\\boxed{x\approx0.123484}\qquad\text{evaluate}[/tex]

Answer:
x ≈ 0.12348
Step-by-step explanation:
To solve the equation [tex]10e^{8x+1} - 3 = 70[/tex], follow these steps:
Isolate the exponential term:
Add 3 to both sides to isolate the exponential term.
[tex]10e^{8x+1} = 70 + 3[/tex]
[tex]10e^{8x+1} = 73[/tex]
Divide both sides by 10:
[tex]e^{8x+1} = \dfrac{73}{10}[/tex]
Take the natural logarithm (ln) of both sides to eliminate the exponential term:
[tex]\ln(e^{8x+1}) = \ln\left(\dfrac{73}{10}\right)[/tex]
[tex]8x + 1 = \ln\left(\dfrac{73}{10}\right)[/tex]
Solve for [tex]x[/tex]:
[tex]8x = \ln\left(\dfrac{73}{10}\right) - 1[/tex]
[tex]x = \dfrac{1}{8} \left(\ln\left(\dfrac{73}{10}\right) - 1\right)[/tex]
Using calculator, we get:
[tex] x \approx 0.1234842935 [/tex]
[tex] x \approx 0.12348 \textsf{ in 5 d.p.)}[/tex]
Therefore, x ≈ 0.12348