Answer:
d)8
Explanation:
[tex]\sf R \alpha \dfrac{1}{A}[/tex]
[tex]\sf Resistance = \dfrac{\rho L }{A}[/tex]
Here, [tex]\sf \rho[/tex] is the resistivity of the material; L is the length of the conductor and A is the cross-sectional area.
Resistance of wire 1:
[tex]\sf R= \dfrac{\rho * L}{A} = \dfrac{\rho * L}{\pi r^2}[/tex]
Resistance of wire 2:
[tex]\sf L_2 = 2L\\\\[/tex]
Diameter of wire is half of diameter of wire 1. So, the radius of wire 2 will be half the radius of wire 1.
[tex]\sf r_1 = \dfrac{r}{2}\\\\\\A_2 = \pi r_1^2 = \pi \left(\dfrac{r}{2}\right)^2\\\\\\A_2=\dfrac{\pi r^2}{4}[/tex]
[tex]\sf R_2= \dfrac{\rho * L_2}{A_2}\\\\\\R_2=\dfrac{\rho*2L}{\frac{\pi r^2}{4}}=\rho*2L *\dfrac{4}{\pi r^2}\\\\\\R_2= \dfrac{8 *\rho*L}{\pi r^2}\\\\\\\boxed{\bf R_2=8R}[/tex]
d) 8