Respuesta :

Answer:

The correct volume is[tex]\( \frac{32}{3} \pi \)[/tex]cubic feet.

Step-by-step explanation:

To find the volume of a sphere given its surface area, you can use the formula:

[tex]\[ A = 4\pi r^2 \][/tex]

Where [tex]\( A \)[/tex] is the surface area and [tex]\( r \)[/tex] is the radius of the sphere.

Given that the surface area is \( 16\pi \) square feet, we can set up the equation:

[tex]\[ 16\pi = 4\pi r^2 \][/tex]

Dividing both sides by \( 4\pi \), we get:

[tex]\[ r^2 = 4 \][/tex]

Taking the square root of both sides, we find:

[tex]\[ r = 2 \][/tex]

Now, to find the volume of the sphere, we use the formula:

[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]

Substituting the value of [tex]\( r \),[/tex] we get:

[tex]\[ V = \frac{4}{3} \pi (2)^3 \][/tex]

[tex]\[ V = \frac{4}{3} \pi (8) \][/tex]

[tex]\[ V = \frac{32}{3} \pi \][/tex]

Therefore, the volume of the sphere is [tex]\( \frac{32}{3} \pi \)[/tex] cubic feet.

However, this volume doesn't match any of the given options. There might be a mistake in the options provided. The correct volume is[tex]\( \frac{32}{3} \pi \)[/tex]cubic feet.