The half-life of radium is about 1600 years. If 1 kg is present now, how much will be present
after each of these
1. 3200 years
2. 16000 years?
3. 800 years
4. t years?

Respuesta :

Answer:

1) 0.25 kg

2) 0.000977 kg

3) 0.707 kg

[tex]\textsf{4)}\quad N(t)=\left(\dfrac{1}{2}\right)^{\dfrac{t}{1600}}[/tex]

Step-by-step explanation:

To determine how much radium will be present after t years, given it has a half-life of about 1600 years, we can use the half-life formula:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Half Life Formula}}\\\\N(t)=N_0\left(\dfrac{1}{2}\right)^{\dfrac{t}{t_{\frac12}}}\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$N(t)$ is the quantity remaining.}\\\phantom{ww}\bullet\;\textsf{$N_0$ is the initial quantity.}\\ \phantom{ww}\bullet\;\textsf{$t$ is the time elapsed.}\\\phantom{ww}\bullet\;\textsf{$t_{\frac12}$ is the half-life of the substance.}\end{array}}[/tex]

In this case:

  • N₀ = 1 kg
  • [tex]t_{\frac{1}{2}}=1600\; \sf years[/tex]

Substitute the values into the half-life formula to create an equation for the amount of radium present N(t) in kilograms after t years:

[tex]N(t)=1\cdot \left(\dfrac{1}{2}\right)^{\dfrac{t}{1600}}\\\\\\N(t)=\left(\dfrac{1}{2}\right)^{\dfrac{t}{1600}}[/tex]

To calculate how much radium is present after the given number of years, substitute the given values of t into the equation.

Question 1

When t = 3200 years:

[tex]N(3200)=\left(\dfrac{1}{2}\right)^{\dfrac{3200}{1600}}\\\\\\N(3200)=\left(\dfrac{1}{2}\right)^{2}\\\\\\N(3200)=0.25\; \sf kg[/tex]

Question 2

When t = 16000 years:

[tex]N(16000)=\left(\dfrac{1}{2}\right)^{\dfrac{16000}{1600}}\\\\\\N(16000)=\left(\dfrac{1}{2}\right)^{10}\\\\\\N(16000)=0.000977\; \sf kg\;(3\;s.f.)[/tex]

Question 3

When t = 800 years:

[tex]N(16000)=\left(\dfrac{1}{2}\right)^{\dfrac{800}{1600}}\\\\\\N(16000)=\left(\dfrac{1}{2}\right)^{\frac{1}{2}}\\\\\\N(16000)=0.707\; \sf kg\;(3\;s.f.)[/tex]

Question 4

When t = t years:

[tex]N(t)=\left(\dfrac{1}{2}\right)^{\dfrac{t}{1600}}[/tex]