A cashier at carter's cafeteria can total an average of 2.2 trays per minute. the probability that the cashier will total between four and ten trays in a minute is:

Respuesta :

A cashier at Carter's cafeteria can total an average of 2.2 trays per minute. the probability that the cashier will total between four and ten trays in a minute is: 0.1082

Answer:

The probability that the cashier will total between four and ten trays in a minute is 0.0724

Step-by-step explanation:

We are given

A cashier at carter's cafeteria can total an average of 2.2 trays per minute

so, mean =2.2

[tex]\mu=2.2[/tex]

Since, this is poisson's distribution

so, we can use formula

[tex]f(t)=\frac{\mu^te^{-\mu}}{t!}[/tex]

now, we have to find

the probability that the cashier will total between four and ten trays in a minute

we can plug [tex]\mu=2.2[/tex]

[tex]f(t)=\frac{(2.2)^te^{-2.2}}{t!}[/tex]

At t=5:

[tex]f(5)=\frac{(2.2)^5e^{-2.2}}{5!}[/tex]

[tex]f(5)=0.04759[/tex]

At t=6:

[tex]f(6)=\frac{(2.2)^6e^{-2.2}}{6!}[/tex]

[tex]f(6)=0.01745[/tex]

At t=7:

[tex]f(7)=\frac{(2.2)^7e^{-2.2}}{7!}[/tex]

[tex]f(7)=0.00548[/tex]

At t=8:

[tex]f(8)=\frac{(2.2)^8e^{-2.2}}{8!}[/tex]

[tex]f(8)=0.00151[/tex]

At t=9:

[tex]f(9)=\frac{(2.2)^9e^{-2.2}}{9!}[/tex]

[tex]f(9)=0.00037[/tex]

[tex]P(4<t<10)=P(5)+P(6)+P(7)+P(8)+P(9)[/tex]

[tex]P(4<t<10)=0.04759+0.01745+0.00548+0.00151+0.00037[/tex]

[tex]P(4<t<10)=0.0724[/tex]