Respuesta :
[tex]2^{x} = 128[/tex]
[tex]log_2 128 = x[/tex]
[tex]x = \frac{log_{10}128}{log_{10}2}[/tex]
[tex]log_2 128 = x[/tex]
[tex]x = \frac{log_{10}128}{log_{10}2}[/tex]
Answer:
[tex]log_{2}128= \frac{log_{10} 128}{log_{10} 2}[/tex].
Step-by-step explanation:
Given : [tex]2^{x}[/tex] = 128.
To find : what is the logarithmic form of the equation in base 10
Solution : We have given that [tex]2^{x}[/tex] = 128.
By th change base rule ( inverse of exponential function )
[tex]a^{b}[/tex] = c is equal to [tex]log_{a}(c)[/tex] = b
Then [tex]2^{x}[/tex] = 128 in to logarithm form [tex]log_{2}(128)[/tex] = x.
Then in to the base 10 logarithmic form.
By the change of base formula [tex]log_{b}a= \frac{log_{10} a}{log_{10} b}[/tex].
Then , [tex]log_{2}128= \frac{log_{10} 128}{log_{10} 2}[/tex].
Therefore, [tex]log_{2}128= \frac{log_{10} 128}{log_{10} 2}[/tex].