[tex] \frac{AB}{BC} [/tex] = [tex] \frac{EB}{DC} [/tex]
[tex] \frac{AB}{BC} [/tex] = [tex] \frac{1.75 m}{7 m} [/tex]
let AB = E
⇒ (AB) (7 m) = (1.75 m) ( BC + AB)
(AB) (7 m) = (1.75 m) (1.5 m + AB)
= 2.625 m² + (1.75 m ) (AB)
(AB) (7 m - 1.75 m) = 2.625 m²
∴ AB = 2.625 m² ÷ (5.25 m)
⇒ the length of AB is 0.5 m