Find the volume of a rectangular prism if the length is 4x, the width is 5x, and the height is x2 + x + 2. Use the formula V = l ⋅ w ⋅ h, where l is length, w is width, and h is height, to find the volume

Respuesta :

(4x)(5x)(x^2+x+2)

20x^2(x^2+x+2)

Answer: 20x^4+20x^3+40x^2 cubic units

Answer:

[tex]20x^4+20x^3+40x^2[/tex] cubic units

Step-by-step explanation:

Let l be the length, w be the width and h be the height of the rectangular prism.

As per the statement:

Given the length(l) = 4x units , width(w) = 5x units,  and height(h) = [tex]x^2+x+2[/tex] units

We have to find the volume of a rectangular prism.

Use the formula:

[tex]V = lwh[/tex]

Substitute the given values we have;

[tex]V = 4x \cdot 5x \cdot (x^2+x+2)[/tex]

⇒[tex]V =20x^2 \cdot (x^2+x+2)[/tex]

Using distributive property:  [tex]a \cdot (b+c) = a\cdot b+ a\cdot c[/tex]

[tex]V = 20x^4+20x^3+40x^2[/tex]

Therefore, the volume of rectangular prism is, [tex]20x^4+20x^3+40x^2[/tex] cubic units