Respuesta :

There is a formula for parabola
y-k=1/4p(x-h)²
and the focal length is p
So the answer is 2/3

Answer:

The Focal length of the parabola is [tex]p=\frac{2}{3}[/tex]      

Step-by-step explanation:

Given : Parabola equation [tex]y-4=\frac{3}{8}x^2[/tex]

To find : What is the focal length of the parabola with the equation?

Solution :

The given parabolic equation is

[tex]y-4=\frac{3}{8}x^2[/tex]

The general form of the parabola is [tex](y-k)=\frac{1}{4p}(x-h)^2[/tex]

Where, (h,k) are the vertex of the parabola and p is the focal length.

On comparing with [tex]y-4=\frac{3}{8}x^2[/tex]

(h,k)=(0,4) is the vertex of the parabola

The focal length is

[tex]\frac{1}{4p}=\frac{3}{8}[/tex]

[tex]p=\frac{8}{3\times 4}[/tex]

[tex]p=\frac{2}{3}[/tex]

So, The Focal length of the parabola is [tex]p=\frac{2}{3}[/tex]