what is the difference (x/x^2+3x+2)-(1/(x+2)(x+1)

a. (x-1)/(6x+4)
b. (-1)/4x+2)
c. (1)/(x+2)
d. (x-1)/x^2+3x+2)

Respuesta :

answer is D i believe

Answer:

Option D is correct

The difference of  [tex]\frac{x}{x^2+3x+2}- \frac{1}{(x+2)(x+1)}[/tex] = [tex]\frac{x-1}{x^2+3x+2}[/tex]

Step-by-step explanation:

To find the difference of the equation:

[tex]\frac{x}{x^2+3x+2}- \frac{1}{(x+2)(x+1)}[/tex]             ....[1]

first multiply the terms

[tex](x+2)(x+1) =(x^2+x+2x+2)[/tex]

Substitute this in equation [1], we have

[tex]\frac{x}{x^2+3x+2}- \frac{1}{x^2+3x+2}[/tex]

If the denominators are same, then we have

[tex]\frac{x+(-1)}{x^2+3x+2}[/tex] = [tex]\frac{x-1}{x^2+3x+2}[/tex]

Therefore, the difference of the given equation  [tex]\frac{x}{x^2+3x+2}- \frac{1}{(x+2)(x+1)}[/tex] is,   [tex]\frac{x-1}{x^2+3x+2}[/tex]