amir pitches a baseball at an initial height of 6 feet, with a velocity of 73 feet per second. If the batter misses, about how long does it take the ball hit the ground?

Hint: Use H(t) = -16t^2+vt+s

Respuesta :

Hey! The correct time is 4.64 seconds.

Answer:

4.643 seconds

Step-by-step explanation:

We have been given that

s = 6 feet

v = 73 feet per second

Substituting these values in the formula [tex]H(t)=-16t^2+vt+s[/tex]

[tex]H(t)=-16t^2+73t+6[/tex]

When the ball hits the ground, the height becomes zero. Thus, H(t)=0

[tex]-16t^2+73t+6=0[/tex]

We solve the equation using quadratic formula [tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Substituting the values [tex]a=-16,\:b=73,\:c=6[/tex]

[tex]t_{1,\:2}=\frac{-73\pm \sqrt{73^2-4\left(-16\right)6}}{2\left(-16\right)}\\\\=\frac{-73\pm\sqrt{5713}}{-2\cdot \:16}\\\\=-0.081,4.643[/tex]

time can't be negative. Hence, t = 4.643.

Hence, the ball will take  4.643 seconds to hit the ground.