Respuesta :

The numerator could be written a⁴/⁵

The denominator could be written a²/³


Now solve  ( a⁴/⁵) / (a²/³) ==> a⁽⁴/⁵ ⁻²/³)  = a⁽²/¹⁵)

This is the simplest way

Answer:

Simplest form is [tex]a^{\frac{2}{15} }[/tex].

Step-by-step explanation:

Given : [tex]\frac{\sqrt[5]{a^{4}}}{\sqrt[3]{a^{2}}}[/tex].

To find : Which of the following is the simplest form of this expression?

Solution: We have given :

[tex]\frac{\sqrt[5]{a^{4}}}{\sqrt[3]{a^{2}}}[/tex]

By the radical rule [tex]\sqrt[a]{b^{c} } = b^{\frac{c}{a}}[/tex],

Then

[tex]\frac{\sqrt[5]{a^{4}}}{\sqrt[3]{a^{2}}}[/tex]  = [tex]\frac{a^{\frac{4}{5}}}{a^{\frac{2}{3}}}[/tex].

⇒[tex]a^{\frac{4}{5} -\frac{2}{3}}[/tex].

⇒ [tex]a^{\frac{12-10}{15} }[/tex].

⇒ [tex]a^{\frac{2}{15} }[/tex].

Therefore, Simplest form is [tex]a^{\frac{2}{15} }[/tex].